翻訳と辞書
Words near each other
・ Pseudohypatopa beljaevi
・ Pseudohypatopa longicornutella
・ Pseudohypatopa longitubulata
・ Pseudohypatopa paulilobata
・ Pseudohypatopa pulverea
・ Pseudohypatopa ramusella
・ Pseudohyperaldosteronism
・ Pseudohypertension
・ Pseudohypoaldosteronism
・ Pseudohypoparathyroidism
・ Pseudohypoxia
・ Pseudoideal
・ Pseudointellectual
・ Pseudoips prasinana
・ Pseudois
Pseudoisotopy theorem
・ Pseudoisturgia
・ Pseudojana
・ Pseudojana clemensi
・ Pseudojana incandescens
・ Pseudojana obscura
・ Pseudojana pallidipennis
・ Pseudojana perspicuifascia
・ Pseudojana roepkei
・ Pseudojana vitalisi
・ Pseudojudomia
・ Pseudojuloides
・ Pseudojuloides kaleidos
・ Pseudokadyella
・ Pseudokamikiria


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Pseudoisotopy theorem : ウィキペディア英語版
Pseudoisotopy theorem
In mathematics, the pseudoisotopy theorem is a theorem of Jean Cerf's〔(French mathematician, born 1928 )〕 which refers to the connectivity of a group of diffeomorphisms of a manifold.
== Statement ==

Given a differentiable manifold ''M'' (with or without boundary), a pseudo-isotopy diffeomorphism of ''M'' is a diffeomorphism of ''M'' × () which restricts to the identity on M \times \ \cup \partial M \times ().
Given f : M \times () \to M \times () a pseudo-isotopy diffeomorphism, its restriction to M \times \ is a diffeomorphism g of ''M''. We say ''g'' is ''pseudo-isotopic to the identity''. One should think of a pseudo-isotopy as something that is almost an isotopy—the obstruction to ''ƒ'' being an isotopy of ''g'' to the identity is whether or not ''ƒ'' preserves the level-sets M \times \ for t \in ().
Cerf's theorem states that, provided ''M'' is simply-connected and dim(''M'') ≥ 5, the group of pseudo-isotopy diffeomorphisms of ''M'' is connected. Equivalently, a diffeomorphism of ''M'' is isotopic to the identity if and only if it is pseudo-isotopic to the identity.


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Pseudoisotopy theorem」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.